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Abstract: Although collective dynamics of atom groups steer many biologically relevant processes in
biomacromolecules, most atomic resolution motional studies focus on isolated bonds. In this study, a new
method is introduced to assess correlated dynamics between bond vectors by cross relaxation nuclear
magnetic resonance (NMR). Dipole-dipole cross correlated relaxation rates between intra- and inter-residual
HN-N and HR-CR in the 56 residue protein GB3 are measured with high accuracy. It is demonstrated that
the assumption of anisotropic molecular tumbling is necessary to evaluate rates accurately and predictions
from the static structure using effective bond lengths of 1.041 and 1.117 Å for HN-N and HR-CR are within
3% of both experimental intra- and inter-residual rates. Deviations are matched to models of different degrees
of motional correlation. These models are based on previously determined orientations and motional
amplitudes from residual dipolar couplings with high accuracy and precision. Clear evidence of correlated
motion in the loops comprising residues 10-14, 20-22, and 47-50 and anticorrelated motion in the R
helix comprising 23-38 is presented. Somewhat weaker correlation is observed in the � strands 2-4,
which have previously been shown to exhibit slow correlated motional modes.

Introduction

Routine NMR approaches to study molecular dynamics assess
motions of isolated H-N or H-C bond vectors. 15N relaxation
experiments aim at time scales of picoseconds to tens of
nanoseconds.1-3 More recent approaches extend the scale up
to milliseconds. Relaxation dispersion studies define time scales
of chemical and conformational exchange.4 Residual dipolar
couplings (RDCs)5 report simultaneously on time averages of
bond orientations and motional effects.6-9 However, it is not
trivial to convert relaxation rates or RDCs into amplitudes and
directionalities of collective dynamics of groups of atoms with
which many biologically relevant processes are associated.10-12

For example, protein backbone plane motions are mostly

reflected in fluctuations around the � and Ψ backbone angles.
Generally, methods to assess relative motions between different
bond vectors are required to complete the picture of backbone
motion.

In previous studies on protein GB3,13 highly precise in-
traresidual HN-HR J-coupling values have been fitted to Karplus
curves to set limits on motions around φ angles.14 Measurements
of HN-HR RDCs showed that intraresidual values are virtually
the same as predicted for a structure exhibiting minimal motion
corresponding to CR-CO fluctuations, whereas sequential values
are 9% smaller.15 Both approaches suggest fluctuations around
the φ angles to be very small. Furthermore, large sets of RDCs
and scalar couplings across hydrogen bonds have been used to
identify slow correlated motions in the � sheet.16 Recently, the
motional mode distribution has been reproduced by accelerated
molecular dynamics (AMD).12

Cross correlated relaxation rates (CCR rates) depend on the
relative orientation of two tensorial interactions.17 In multiple
quantum coherences, some of these interactions do not share a
common spin and can be located several angstroms apart from
one another. CCR rates have been proposed for determination
of backbone torsion angles a decade ago by the Griesinger
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laboratory.18 Subsequently, a wealth of experiments have been
designed to determine the Ψ angle by means of HR-CR(i)
dipole/HN-N(i) dipole18-25 or HR-CR(i) dipole/CO(i) CSA21,26-28

and the φ angle by means of HR-CR(i - 1) dipole/HN-N(i)
dipole22,24,25 or HR-CR(i-1) dipole/CO(i) CSA29 CCR rates.
Other approaches defining backbone geometry make use of N
CSA/CO CSA,30 HN-CO dipole/HN-N dipole,30 CO CSA/CO
CSA,31 or HN-CO dipole/CO CSA.32

It has been shown that CCR rates are also reporters on
dynamics.33,34 Importantly, in contrast to autorelaxation rates,
these rates are sensitive to motion on all time scales.35,36

Multiple quantum experiments have been proposed to assess
backbone plane motion.37 Sums of HN-N dipole/CO-CR dipole
and HN-CR dipole/CO-N dipole38 or HN-CO dipole/CO
CSA32 CCRs have been interpreted with GAF models.39,40

HN-N dipole/ HN-N dipole revealed correlated motions in
ubiquitin.35 However, interpretation of dynamics is difficult.
Similarly to the interpretation of RDCs, vector orientation and
motion are intertwined and generally underdetermined.7,41

Sensitivity of CCR rates to anisotropy in rotational diffusion42

complicates the formal description further. A full theoretical
description taking into account fast and slow dynamics is still
an active field.36

In the present study, CCR rates in GB3 are used to study
relative fluctuations between HN-N and HR-CR bonds, presum-
ably dominated by the � and Ψ backbone angles in GB3.
Preselected bond orientations are shown to be approximately
correct, and deviations from predicted CCR rates are interpreted
in terms of motional effects. This approach is opposed to the

standard procedure, where dynamics and orientation are fitted
simultaneously. The following steps are taken to guarantee
highest possible precision and accuracy: (i) Data quality: CCR
rates are measured exclusively between dipolar interactions
(Figure 1). With a very accurate structure at hand, these rates
can be more conveniently evaluated than rates involving CSA
interactions. Pulse sequences featuring minimal systematic
errors, based on evolution of all multiplet components in
multiple quantum coherences, are used to measure CCR rates
and are compared to sequences producing a high signal-to-noise
ratio, based on direct measurements of interconversion between
inphase and antiphase multiple quantum coherences. (ii) Selec-
tion of vector orientations: The interpretation crucially depends
on the accuracy of the HN and HR proton positions. The
orientations of the bond vectors HN-N and HR-CR are taken
from a study that employed highly accurate RDCs from multiple
alignments.9 It is shown that these vectors cross-validate best
with highly precise 3JHNHR scalar couplings and intraresidual
and sequential HN-HR RDCs. (iii) Evaluation of the theoretical
framework: Models assuming isotropic, axially symmetric, and
fully anisotropic tumbling are compared. Examination of the
derivation of CCR order parameters is lined out, and values
are simulated for different models of motional correlation.
Finally, the experimental rates are compared to the simulated
rates. Observation of correlated motion in the loops comprising
residues 10-14, 20-22, and 47-50 and of anticorrelated
motion in the R helix comprising residues 23-38 is supported
by 13 ns molecular dynamics (MD) simulations. Somewhat
weaker correlation in the � strands 2-4 is not substantiated by
the MD simulations.

Theory

Extraction of Cross-Correlated Relaxation Rates. Evolution
of multiple quantum coherence, MQ, between spins I1 and I2,
where I1 is weakly scalar coupled to the passive spin S1 (JI1S1)
and I2 to S2 (JI2S2) yields eight peaks corresponding to the
coherence order (zero and double quantum, ZQ and DQ) and
the spin states of S1 and S2 (RR, R�, �R, and ��). In the secular
approximation, magnetization is exchanged between these
components by cross-correlated relaxation between six mech-
anisms (chemical shift anisotropy of I1 and I2, and dipolar
interaction between I1-S1, I2-S2, I1-S2 and I2-S1) resulting in
15 nonuniform contributions to the relaxation rates of the
individual peaks.20 In addition, the nuclear Overhauser effect
between S1 and S2 must be considered.23,35 W0 contributes to
the components in the R� and �R states and W2 to those in the
RR and �� states. The cross-correlated relaxation rate of interest,
Rd(I1S1)/d(I2S2), can only be extracted together with other terms
from peak intensities I of the components of a ZQ or DQ
quadruplet:
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Figure 1. Cartoon representation of bond vectors used in the present study
and motions in two peptide backbone planes. Red atoms form the bond
vectors of the dipolar mechanism between which CCRs are measured. Pink
circles indicate fast bond fluctuation, and the blue arrows represent γ motion
about the blue axes in the peptide planes.
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TMQ is the constant time during which the coherences evolve.
Note that, in both cases, the intensities of the inner components
are divided by the outer components (or vice versa, depending
on the sign of JI1S1 and JI2S2). Unwanted additional contributions
are three dipole-dipole cross correlated relaxation rates and
half-of W0 and W2. However, all terms except for the one of
interest depend inversely on the spatial separation of the I1-S1

from the I2-S2 vector. By identifying I1 and I2 with N and CR,
and S1 and S2 with the attached protons, Rd(I1S1)/d(I2S2) is much
larger than the other terms and can be approximately extracted
from peak intensities I of the components of a ZQ or DQ
quadruplet.23 In the present application, however, highest
possible accuracy and precision are crucial, and the adverse
impact of the smaller terms is evaluated. Simulations show that,
for intraresidual coherences, Rd(I1S1)/d(I2S2), Rd(I1S1)/d(I2S1), Rd(I1S2)/

d(I2S2), and Rd(I1S2)/d(I2S1) can be as large as 15, 0.7, 3, and 0.3
s-1, W0 is typically ≈ 0.3 s-1, whereas W2 is very small. The
contributions to the sequential rates are similar. Clearly, the
unwanted terms cannot be neglected, and therefore, the average
of the rates obtained from the ZQ and the DQ spectra are used.
This is equivalent to using the following:

Rd(I1S2)/d(I2S1) cannot be separated from Rd(I1S1)/d(I2S2). Although
it can be neglected for sequential rates with a typical value of
0.03 s-1, this is not valid for intraresidual rates of typically 0.2
s-1. In the following, both rates must be considered. Under the
assumption that radial and spherical motion of the bond vectors
are not correlated, the rates are expressed as

where γi is the gyromagnetic ratio of nucleus i, rij
eff is the

effective distance between nuclei i and j, µ0 is the permeability
of free space, and h denotes Planck’s constant. The spectral
density function Jd(A)/d(B)(ω) depends on the orientation and
dynamics of bond vectors A and B. Equations 2.1 and 2.2 are
exact; that is, there are no terms depending on frequencies ω
* 0.

In the experimental approach presented in Figure 2, all
components are minimally manipulated during evolution (re-
ferred to as ACE, see NMR spectroscopy), and the peak

intensities are obtained from the same spectrum. No invisible
systematic errors can be introduced by experimental imperfec-
tions such as suboptimal selective pulses. Imperfections rather
rescale all components to the same extent and are canceled out
in eqs 1.1, 1.2, and 1.3.

Spectral Density Function for Cross-Correlated
Relaxation. The correlation function describing dipole/dipole
cross-correlated motion between the vectorial tensors A and B
can be expressed as the following:33

The angular brackets denote time averages, Y2q are the second
rank spherical harmonics, rX is the length of vector X, and the
polar angles θlab and �lab orient the vectors in the laboratory
frame.

1. Anisotropically Tumbling Rigid Molecule. Generalizing
the expressions for the correlation function in ref 3 to the case
of cross-correlated relaxation eq 3 can be written as

where 1/τk are the eigenvalues of the anisotropic diffusion
operator D43 and the coefficients Ck contain the orientational
dependency on the vectors A and B. Explicit expressions for
1/τk and Ck are provided in the Supporting Information.

2. Anisotropically Tumbling Dynamic Molecule. In the fol-
lowing, it is assumed that the time dependencies of r and Y2q

are not correlated and 〈1/rB
3 (t)rA

3 (0)〉 can be expressed with
effective bond lengths 1/(rB

eff)3(rA
eff)3.44 Including fast internal

motion requires time averaging of each summand and for the
vectors A and B individually in eqs S3.1-5 of the Supporting
Information. These modified coefficients may be expressed as
<Ck>. Lipari and Szabo proposed a single-exponential ap-
proximation for C in autorelaxation using an effective correlation
time and a generalized order parameter quantifying motion
independently of a specific physical model.1 Ghose et al.
extended this approach to cross-correlated relaxation in axially
symmetric molecules.45 Analog application to fully anisotropic
tumbling approximates the correlation function as follows:

Here, Ck are functions of the averaged bond orientations. τe

is the correlation time for internal motion and, the five
generalized order parameters individually associated with the
eigenvalues are defined as follows:

Even though these order parameters can be very different
from one another, a single cross-correlation order parameter has
been defined by the sum over all Sk

2.34

Fourier transformation of the correlation function gives the
spectral density function:

(43) Favro, L. D. Phys. ReV. 1960, 119, 53–62.
(44) Case, D. A. J. Biomol. NMR 1999, 15, 95–102.
(45) Ghose, R.; Huang, K.; Prestegard, J. H. J. Magn. Reson. 1998, 135,

487–499.
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with

where τk is typically much smaller than the inverse of the
Eigenvalues of the diffusion operator D and therefore45

where “tr” denotes trace. The spectral density function may be
written in the same form as used for autorelaxation. Ck must be
simply set as a prefactor:

where the order parameter S′k2 is then defined as follows:

Figure 2. Pulse sequences of the 3D ct-HNCA (A) and ct-HN(CO)CA (B) experiments for intraresidual and sequential Rd(HN)/d(HRCR) + Rd(HRN)/d(HCR)

measurement. For sequence (B), the red boxes in sequence (A) are replaced. The radio frequency pulses on 1H, 15N, 13Cali, and 13C′ are applied at 4.7, 118,
56, and 174 ppm, respectively. Narrow and wide bars indicate rectangular 90° and 180° pulses, of which those on 13C are applied with a field of ∆/�15 and
∆/�3, respectively, where ∆ is the difference between the 13Cali and 13C′ carriers in hertz. The single curved pulses represent 13C′-selective 180° sinc pulses
of length pC′

π ) 150 µs, and the triple curved pulse represents a 13CR/�-selective ReBURP pulse49 of length pCR
π ) 400 µs applied at 43 ppm. Vertical lines

connect centered pulses. 1H-decoupling is achieved with WALTZ1650 at a field strength γB1 of 2.1 kHz, and 15N-decoupling is achieved with GARP51 at
a field strength γB1 of 1.25 kHz. The delays have the following values: τ1 ) 2.3 ms, τ2 ) 14 ms, τ3 ) 18 ms, τ4 ) 2.6 ms, τ5 ) 60 µs, τ6 ) 16 ms, τ7

)1/(4JCRC′) ) 4.5 ms, ∆ ) 1/(2JHN) ) 5.4 ms, and T/2 ) 14.42 ms - pCR
π/2 - 2(pCR

π/2)/π, where pCR
π/2 is the length of the rectangular 13Cali 90° pulse.

Unless indicated otherwise, all radio frequency pulses are applied with phase x. The phase cycle for the (ZQ + DQ) subspectrum is as follows: φ1 ) {x, -x};
φ2 ) x; φ3 ) {x, x, x, x, -x, -x, -x, -x}; φ4 ) {x, x, -x, -x}; φ5) -y; φ6 ) {x, x, x, x, x, x, x, x, -x, -x, -x, -x, -x, -x, -x, -x}; φrec ) {x, -x, -x,
x, -x, x, x, -x}for (A) and {x, -x, -x, x, -x, x, x, -x, -x, x, x, -x, x, -x, -x, x} for (B). For the (ZQ - DQ) subspectrum, φ3 and φ4 are increased by
90°. Pulsed field gradients indicated on the line marked PFG are applied along the z-axis with duration/strength of the following: G1, 1200 µs/-9 G/cm; G2,
2000 µs/12 G/cm; G3, 2000 µs/12 G/cm; G4, 100 µs/18 G/cm; G5, 2000 µs/-15 G/cm; GN1, 200 µs/18 G/cm; GN2, 200 µs/-18 G/cm; G6, 1200 µs/10.8
G/cm; G7, 1200 µs/18 G/cm; GH, 40 µs/-18 G/cm; G8, 2000 µs/12 G/cm; G9, 1000 µs/6 G/cm; G10, 2000 µs/12 G/cm. Quadrature detection in the 15N(t1)
is achieved by the ECHO-ANTIECHO method52 applied to φ5 and gradients G6 and G7 and in the MQ[15N,13CR](t2) dimension by the States-TPPI method53

applied to the phases φ2, φ4, and φrec.
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This order parameter does not meet the Lipari-Szabo
criterion anymore1 but recovers the convenient property that it
equals 1 for a perfectly rigid molecule.

3. Symmetrically and Isotropically Tumbling Dynamic
Molecule. More convenient expressions are obtained for
simpler models: If the molecular tumbling is axially sym-
metric, τk ) τ-k, and eqs 6 and 8.1 can be rewritten as sums
over three terms.34 If the molecular tumbling is isotropic, all τk

equal the isotropic tumbling time, and the summation is replaced
by a single expression:34

The only remaining C coefficient is the Legendre polynomial
P2 of the cosine of the projection angle between the vectors A
and B, and the order parameter S2 is its time average, which is
equivalent to the following:

Equation 7 reduces to the following:

The convenience of the definition in eq 9 is now evident. It has
become a standard procedure to relate the experimental spectral
density function to that calculated for a rigid molecule by

using an ad hoc order parameter Sah2,25,28,30-32,46,47 which equals
S′2 for isotropic tumbling.

Experimental Section

Sample Expression and Purification. The protein GB3 was
expressed and purified as described previously.48 The 13C-,15N-
labeled NMR sample contained 350 µL of 4 mM protein solution
in 95% H2O, 5% D2O, 50 mM potassium phosphate buffer, pH
6.5, and 0.5 mg/mL sodium azide.

NMR Spectroscopy. The first approach relies on the evolution
of all multiplet components of the multiple quantum coherence
in a four spin system (see Theory Section). This approach is
referred to as “all components evolution” (ACE). The 3D ct-HNCA

experiment for measurement of intraresidual Rd(HN)/d(HRCR) + Rd(HRN)/

d(HCR) cross-correlated relaxation rates is shown in Figure 2A. 1HN(i)
polarization is excited and converted into multiple quantum
coherences MQ[15N(i),13CR(i)] via 15N(i) in two INEPT steps. The
MQ coherences are chemical-shift labeled under scalar coupling
to 1HN(i) and 1HR(i) during T ) 28.84 ms yielding four components
(doublets of doublets) for both the double-quantum and the zero-
quantum coherences. Subsequently, the magnetization is converted
into single-quantum 15N(i) for chemical shift labeling and transferred
back to 1HN(i) for direct detection. Theoretically, magnetization is
also converted into a multiple quantum coherence between 15N(i)
and 13CR(i - 1), which evolves under scalar coupling to 1HN(i) and
1HR(i - 1), from which sequential relaxation rates can be extracted.
Practically, however, it is not possible to obtain optimal sensitivity
simultaneously for intraresidual and sequential coherences, and peak
overlap may further limit this approach. Therefore, experiment 2A
is used for optimal transfer to intraresidual 13CR, whereas signals
from sequential coherences are rather weak. Experiment 2B provides
exclusively signal from sequential coherences. Magnetization on
15N(i) is transferred to 13CR(i - 1) via 13CO(i - 1) with an additional
INEPT step (and a second step during the back transfer). This
experiment is essentially the one proposed in refs 18 and 23. Two
subspectra, (ZQ + DQ) and (ZQ - DQ), are recorded and
subsequently added (subtracted) to obtain the ZQ (DQ) spectra.
Experimental details are provided in the caption of Figure 2.

Each subspectrum of the 3D ct-HNCA and ct-HN(CO)CA
experiments was recorded with 55(t1) × 32(t2) × 256(t3) complex
points, t1max ) 27.5 ms, t2max ) 21.9 ms, t3max ) 63.28 ms, and an
interscan delay of 1.0 and 8 scans per increment resulting in a
measurement time of 2 days for a pair of subspectra A and B. The
time domain data were multiplied with square cosine functions in
the direct dimension and cosine functions in the indirect dimensions
and zero-filled to 512 × 128 × 2048 complex points.

The approach put forward by the Bodenhausen laboratory is
described in detail in the corresponding publications. Two comple-
mentary spectra are recorded with peak intensities depending on
the interconversion of doubly inphase and doubly antiphase MQ
coherences with respect to HN and HR. This approach is referred to
as “doubly inphase and antihase interconversion” (DIAI). In-
traresidual Rd(HN)/d(HRCR) + Rd(HRN)/d(HCR) rates were recorded with a
pair of 3D pulse sequences as presented in ref 22 in 2 days.
Sequential Rd(HN)/d(HRCR) + Rd(HRN)/d(HCR) were obtained from pairs
of 2D pulse sequences as described in ref 20 run for 3 days, or in
ref 21 for 1 day.

All experiments were performed on a BRUKER DRX600 MHz
spectrometer, equipped with a z-axes gradient cryogenic probe,
respectively, at 298 K.

All spectra were processed and analyzed using the software
package NMRPipe.54 Peak heights were determined by parabolic
interpolation.

Prediction of CCR Rates. 1. Protein Coordinates
Selection. A variety of coordinate sets of GB3 has been deposited
in the protein data bank (PDB). In this study, the positions of the
HN and HR protons are of particular importance. In X-ray structures,
protons can be added at idealized positions. However, large sets of
RDCs have been used to demonstrate out-of-plane HN positions.48

Subsequently, highly accurate RDCs have been used to orient
HN-N and HR-CR bond vectors with an iterative DIDC method.9
3JHNHR scalar couplings and intraresidual and sequential DHNHR
RDCs are very sensitive reporters on the proton positions.14,15 Best
cross-validation is obtained with an NMR structure (pdb code:
2OED), where the HN-N and HR-CR bond vectors are replaced
by those obtained with the DIDC method. The HR-CR vectors
obtained from protonated samples as presented in ref 9 and a new
set of HN-N vectors from deuterated samples give the best cross-
validation. The bond lengths were scaled to 1.02 and 1.09 Å,

(46) Carlomagno, T.; Felli, I. C.; Czech, M.; Fischer, R.; Sprinzl, M.;
Griesinger, C. J. Am. Chem. Soc. 1999, 121, 1945–1948.

(47) Felli, I. C.; Richter, C.; Griesinger, C.; Schwalbe, H. J. Am. Chem.
Soc. 1999, 121, 1956–1957.

(48) Ulmer, T. S.; Ramirez, B. E.; Delaglio, F.; Bax, A. J. Am. Chem.
Soc. 2003, 125, 9179–9191.

(49) Geen, H.; Freeman, R. J. Magn. Reson. 1991, 93, 93–141.
(50) Shaka, A. J.; Keeler, J.; Frenkiel, T.; Freeman, R. J. Magn. Reson.

1983, 52, 335–338.
(51) Shaka, A. J.; Barker, P. B.; Freeman, R. J. Magn. Reson. 1985, 64,

547–552.
(52) Kay, L. E.; Keifer, P.; Saarinen, T. J. Am. Chem. Soc. 1992, 114,

10663–10665.
(53) Marion, D.; Ikura, M.; Tschudin, R.; Bax, A. J. Magn. Reson. 1989,

85, 393–399.
(54) Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax,

A. J. Biomol. NMR 1995, 6, 277–293.
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respectively. Such a coordinate set yields rmsd values between
predictions and experimental values of 0.32 Hz for 3JHNHR, 1.15
Hz for intraresidual DHNHR, and 1.66 Hz for sequential DHNHR with
the same alignment strength as in ref 15. Note that all rmsds are
lower than in the original publications.

2. Diffusion Model Selection. Very accurate diffusion tensors
for GB3 are available from ref 55. The ratio of the main axis to
the averaged perpendicular axis is ≈1.4, and there is a small
rhombic component. Because of the nonhomogenous distribution
of H-N vectors, the effective tumbling time calculated as half the
inverse trace of the diffusion tensor is ≈3% larger for the isotropic
model than for the nonisotropic ones. Rd(HN)/d(HRCR) + Rd(HRN)/d(HCR)

rates were calculated using eqs 2.1, 2.2, and 7 for isotropic, axially
symmetric, and fully anisotropic tumbling. The protein was assumed
to be rigid. Correlation plots showing the two extreme cases
(isotropic and fully anisotropic) for intraresidual and sequential rates
are shown in Figure 3. The slopes indicate an average difference
of 4% and 5% with largest changes for residues 7, 33, 39, and 56
and 8, 27, 43, and 51, respectively, for intraresidual and sequential
CCR rates.

3. Order Parameter Modeling. Cross-correlation order param-
eters are simulated for models with various extents of motional
correlation. Amplitudes for HN-N and HR-CR bond motion, σHNN

and σHRCR, are obtained from RDC fits assuming Gaussian sym-
metric motion.9 Fluctuations of these two bonds around the rotation
axis orthogonal to the N-CR axis are assumed to be uncorrelated
in all cases. Correlated, uncorrelated, or anticorrelated motion
around the N-CR axis is expressed as fluctuation of the
HN-N-CR-HR dihedral angle:

Order parameters are obtained from eq 10. No distinction
between different models of overall tumbling is made, and thus,
only integration of the Legendre polynomial of the projection angle
is required. Details on the calculation are provided in the Supporting
Information. The simplification is justified because the order
parameters will be used to estimate corrections to relaxation rates
based on a rigid molecule. Such corrections are generally much
smaller than the rates themselves. Note that the choice of the axis
along which correlated motion is assumed is somewhat arbitrary
but runs approximately parallel to the axis of γ motion for both
the intraresidual and sequential case (Figure 1).

Molecular Dynamics Simulation. Starting coordinates for the
protein atoms were taken from the 2OED structure. The protonation
states of the ionizable residues were set to their normal values at
pH 7. The protein was solvated by a layer of ∼6500 TIP3P56 water
molecules, which extended 12.5 Å from the outermost protein atoms
and resulted in a periodic box of the dimensions 52 × 64 × 61 Å.
Two Na+ ions were placed by the Leap program57 to neutralize
the -2 charge of the model system. The parm03 version of the
all-atom AMBER force field58 was used for all the simulations.

MD simulations were carried out using the SANDER module
in AMBER 8.0.57 The SHAKE algorithm was used to constrain
the bond lengths of all bonds involving hydrogen atoms permitting
a 2 fs time step.59 A nonbonded pair list with a cutoff of 8.0 Å
was updated every 25 steps. The Particle-Mesh-Ewald method
was used to include the contributions of long-range electrostatic
interactions.60 The volume and the temperature (300 K) of the
system were controlled during the MD simulations (with constant
volume) by Berendsen’s method.61

The simulation time was 14.3 ns with a 1.3 ns equilibration
period. Coordinates were saved every 10 ps. All of the MD results
were analyzed by using the PTRAJ module of AMBER 8.0 and an
in-house program. HN-N and HR-CR order parameters S2 are
calculated using eq 12, and motional amplitudes are extracted under
the assumption of Gaussian symmetric motion.

Results and Discussion

Validation of Measurements. 2D planes cut from spectra as
obtained in the ACE approach are shown in Figure 4. Residue

(55) Hall, J. B.; Fushman, D. J. Biomol. NMR 2003, 27, 261–275.

(56) Mahoney, M. W.; Jorgensen, W. L. J. Chem. Phys. 2000, 112, 8910–
8922.

(57) Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz,
K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J.
J. Comput. Chem. 2005, 26, 1668–1688.

(58) Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G. M.; Zhang,
W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J. M.;
Kollman, P. J. Comput. Chem. 2003, 24, 1999–2012.

(59) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys.
1977, 23, 327–341.

(60) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;
Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577–8593.

(61) Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren, W. F.; Dinola,
A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684–3690.

Figure 3. Correlation plot of CCR rates simulated for isotropic and fully
anisotropic tumbling of GB3. The protein is assumed to be rigid. Rd(HN)/

d(HRCR) + Rd(HRN)/d(HCR) is abbreviated by R. Diffusion tensors are taken from
ref 55. Intraresidual and sequential CCR rates are shown in A and B,
respectively. The slopes, obtained by a least-squares fit, are 1.04 and 1.05,
and Pearson’s correlation coefficients are 0.996 and 0.997, respectively.
Residues that show the largest change are marked in red. Pairwise rmsd
values are 0.64 and 0.58 s-1.
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Ala29 is chosen to represent a lower limit in terms of signal-
to-noise. The CCR rates are cross validated with those obtained
with the DIAI approach. Relaxation rates obtained from ACE
rely on linear combination of relaxation rates of eight individual
components (see Theory Section). Equation 1.3 shows that
potentially different scaling of peak intensities from the two
subspectra is canceled out. Different scaling of the four
components from one subspectrum due to additional relaxation
pathways, pulse imperfections, and so forth are approximately
also eliminated because the MQ evolution is under minimal
manipulation. The DIAI experiments suffer from the fact that
the ratio of intensities from peaks in two different spectra is
calculated. One spectrum serves as a reference and decouples
the protons. A second spectrum evolves the MQ coherence into
antiphase with respect to both protons that assumes uniform
scalar couplings. Undesired pathways superimpose contributions
on the evaluated peaks. On the other hand, this approach is very
sensitive. The uncertainty of only two (generally strong) peak
intensities (as opposed to eight) is propagated, and a smaller
random error can be expected. Figure 5 shows correlation plots
of experimental Rd(HN)/d(HRCR) + Rd(HRN)/d(HCR) CCR rates and
Table S1 in the Supporting Information lists correlation
parameters. The reliability of the ACE approach is demonstrated
by the comparison to predicted values (vide infra). In addition,
the difference between linear regressions for intraresidual and
sequential rates is only 1%. The DIAI approach is not as
uniform. By taking the ACE rates as a reference, intraresidual
DIAI rates are underestimated by ≈7% with the pulse sequence
in ref 22. Interresidual rates are relatively largely overestimated
by the initially used pulse sequence20 (≈20%) but are less than
5% underestimated with an elegantly improved version of the

pulse sequence.21 This observation seems in rough agreement
with measurements on human ubiquitin where experimental
CCR rates fall on curves predicted for rates with ad hoc order
parameters of ≈0.9 and ≈0.76 for the former and latter pulse
sequence.20,21 Note that underestimations of 7% and 5% could
hardly be identified using only one experimental approach and
no highly accurate structure due to uncertainties in bond vector
orientation, tumbling time, and dynamics. Clearly, the slopes
of the ACE approach must be used for evaluation of overall
order parameters. However, rmsds from predicted values may
be comparable or better for DIAI than for ACE. After uniformly
scaling all DIAI rates to the slope of ACE, the rmsd between
ACE and DIAI rates can be used to estimate the random and a
fraction of the systematic error (pairwise rmsd for intraresidual
0.62 s-1 and for sequential 0.67 s-1). It should be noted that
both approaches might produce some identical systemtic errors,
since the two approaches are based on similar principles.
Averages of rates from ACE and rescaled rates from DIAI yield
errors of about 0.3 s-1 (intraresidual 0.31 s-1 and sequential
0.34 s-1).

Fit to Rigid Structure. A uniform scaling factor relating
predicted to experimental CCR rates is obtained from the slope
in a linear regression. This factor is subsequently used to obtain
motionally corrected predicted rates, and the pairwise rmsd from
the experimental rates is calculated. The data sets in the ACE
approach have rmsd values between 0.8 and 1.0 s-1, whereas
those from DIAI are between 0.5 and 1.0 s-1 (Tables S1 in the
Supporting Information). Exceptionally good fits are obtained
for the intraresidual DIAI approach, suggesting a low random
error. The slopes in the ACE approach differ by 1% for
intraresidual and sequential rates, whereas a larger spread is

Figure 4. 2D planes and slices cut from the 3D ct-HNCA and ct-HN(CO)CA experiments showing the multiplets of Ala29. DQ spectra are shown on the
left and ZQ spectra on the right. Intraresidual multiplets are on top, and sequential multiplets are at the bottom. The horizontal axes represent MQ frequencies
in hertz units with arbitrary origins. The peak intensities of residue Ala29 constitute a lower limit for multiplets evaluated.
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obtained in the DIAI approach. Overall, the ACE approach
produces a reliable slope, but DIAI proves very sensitive where
systematic errors reflected in deficient slopes are mostly
uniformly scaled throughout the molecule. In the following, rates
obtained from averages of both approaches, where the rates from
DIAI are scaled to produce the same slopes as those from ACE
are used (Table 1). The change from the isotropic tumbling
model to the axially symmetric tumbling model improves the
rmsd by ≈0.05 s-1. An additional improvement of ≈0.01 s-1

is obtained with the fully anisotropic model. Importantly, choice
of the isotropic model yields ≈5% smaller slopes, which would
significantly distort the extraction of order parameters. Clearly,
the axially symmetric or fully anisotropic model must be used
for a proper analysis. Not surprisingly, the small rhombicity of
the diffusion tensor has only a small impact on the rmsd and
the slope. Figure 6 shows correlation plots of predicted and
experimental CCR rates for the anisotropic tumbling model.

As is evident from eqs 6 and 10, S2 and S′2 can only be
experimentally quantified for isotropic tumbling without invok-
ing a specific model of motion. However, Sah2 is model
independent and proportional to the slope between the theoretical
and experimental CCR rates. Table 1 lists order parameters
obtained for all models of molecular tumbling (for a complete
list of all experiments see Table S2 in the Supporting Informa-
tion). Bond lengths r used in the prediction for a rigid molecule
are replaced by reff (see Theory Section). Values of 1.041 and
1.117 Å for HN-N and HR-CR 44, respectively, result in a
multiplication factor of 1.144. Such effective lengths absorb
radial and angular fluctuations of isolated bonds, that is zero-
point librations and vibrations as well as angular fluctuations
around the CR-CR axis. The isotropic tumbling model produces
order parameters that are typically 5% smaller than for the other
models. Note that the effective tumbling time is about 3% larger
(see Experimental Section) and the additional 2% are effects
of nonhomogeneity of the vectors involved in CCR. Deviations
of more than 1 s-1 are observed for residues 15, 24, 27, 29, 31,
and 39 for the intraresidual and 9, 18, 26, 34, 37, 46, and 48
for the sequential rates. Residues 15 (intraresidual) and 46
(sequential) have large errors of 0.62 and 0.48 s-1, respectively,
and do fit well using only the DIAI values. These outliers are
likely to lack accuracy in the ACE approach. For residues 24,
29, 31, and 39 (intraresidual) and 9, 18, 26, 34, 37, and 48
(sequential), both approaches yield deviation, and for residue
27 (intraresidual), no value could be obtained from the DIAI
approach leaving the experimental error unknown. Erroneous
vector orientation or dynamic effects may be the cause.
However, neither experimental 3JHNHR scalar couplings nor
DHNHR RDCs exhibit unusually large deviations from values
predicted from the vectors used here (data not shown). Many
of these residues are located in the R helix comprising residues
23-36. Generally, few good fits are obtained for the loop with
residues 37-41, due to lack of experimental data (residues 38
and 41 are GLY), lack of accurate vector orientation (residue
40), or large deviation (residues 37 and 39). Interestingly, the
large deviation for residue 39 is not present when using the
isotropic tumbling model (see Figure 3). The only poor fits for
� strands are residues 18 (sequential) and 46 (intraresidual).
Interestingly, outliers in the R helix fall all to the same side of
the slopes.

Overall, the experimental CCR rates can be predicted very
closely by setting the order parameter 1 and using effective bond
lengths to absorb motional effects. However, these bond lengths
are obtained from analysis of motional effects on isolated bonds.
In general, their use for prediction of CCR rates is flawed due
to presence of correlated motion.

Fit to Dynamic Structures. A more elaborate description of
CCR rates takes the presence of correlated motion into account.
Therefore, the effective bond length is adjusted to absorb radial
but no spherical fluctuation; that is, 1.02 and 1.09 Å are assumed
for HN-N and HR-CR. It should be noted that, in a recent
publication, the effective HN-N bond length absorbing zero-
point vibrations but no angular fluctuations has been determined
to be 1.015 ( 0.006 Å. 62 Here, 1.02 Å is chosen, which is
frequently used in pdb files and is within the experimental
uncertainty range. Order parameters are obtained from integra-
tion over projection angles obtained from models assuming
uncorrelated, correlated, and anticorrelated bond motion. Figure

(62) Yao, L. S.; Vögeli, B.; Ying, J. F.; Bax, A. J. Am. Chem. Soc. 2008,
130, 16518–16520.

Figure 5. Correlation plots of CCR rates obtained with the ACE and DIAI
approaches. Rd(HN)/d(HRCR) + Rd(HRN)/d(HCR) is abbreviated by R. Intraresidual
and sequential CCR rates are shown in A and B, respectively. DIAI rates
are scaled to match a slope of 1 (see text) resulting in pairwise rmsd values
of 0.62 s-1 and 0.67 s-1. Pearson’s correlation coefficient is 0.988 and 0.991,
respectively. Outliers are marked in red.

J. AM. CHEM. SOC. 9 VOL. 131, NO. 10, 2009 3675

Dynamics Observed by NMR Cross Relaxation A R T I C L E S



7 shows correlation plots relating the experimental relaxation
rates to the simulated relaxation rates for four models of
correlated motion: fully correlated motion (equivalent to the rigid
molecule), correlated and anticorrelated motion around the
HN-N-CR-HR dihedral angle, and uncorrelated motion. Gen-
erally, order parameters from anticorrelated motions are the
smallest, followed by uncorrelated motion and correlated motion.
As expected, the rigid model (complete correlation) overesti-
mates the rates for nearly all residues because shortening
effective bond lengths simply rescales the order parameters
obtained in the previous section. The prediction closest to the

experimental values is about evenly distributed between the three
nonrigid models. Some predictions fall clearly outside the
experimental error range. The cumulated uncertainties from
experimental errors, errors in bond orientation, motional am-
plitudes of the isolated bonds, and simplification of the models
do not allow quantification of correlation degrees. Nevertheless,

Table 1. Slopes, Order Parameters, Rmsds, and Pearson’s Correlation Coefficient, r, between Experimental and Predicted CCR Rates of GB3

CCR diffusion modela slopeb Sad2 c S′2 c rmsdd (Hz) r

intraresidual isotropic 0.849 ( 0.011 0.971 ( 0.013 0.971 ( 0.013 0.75 0.983
axially symmetric 0.894 ( 0.011 1.023 ( 0.012 0.70 0.986
fully anisotropic 0.888 ( 0.011 1.016 ( 0.012 0.69 0.986

sequential isotropic 0.851 ( 0.015 0.973 ( 0.017 0.973 ( 0.017 0.84 0.986
axially symmetric 0.904 ( 0.014 1.034 ( 0.016 0.74 0.989
fully anisotropic 0.897 ( 0.014 1.026 ( 0.016 0.73 0.989

a The diffusion tensors are taken from ref 55. b rHN ) 1.02 Å and rHRCR ) 1.09 Å are assumed. X-axis is the predicted and Y-axis the experimental
rate. c rHN

eff ) 1.041 Å and rHRCR
eff ) 1.117 Å are assumed. X-axis is the predicted and Y-axis the experimental rate. d Pairwise rmsd value. The

predicted values are multiplied by the slope.

Figure 6. Correlation plots of predicted and experimental CCR rates. Rd(HN)/

d(HRCR) + Rd(HRN)/d(HCR) is abbreviated by R. Intraresidual and sequential CCR
rates are shown in (A) and (B), respectively. For prediction, the fully
anisotropic model is used.55 Vertical error bars represent the difference
between the values obtained from the ACE and DIAI approaches. The
slopes, obtained by a least-squares fit, are 0.888 and 0.897, and Pearson’s
correlation coefficient is 0.986 and 0.989, respectively. Outliers are marked
in red. After scaling the rates obtained from the DIAI approach by the slopes,
pairwise rmsd values are 0.69 and 0.73 s-1.

Figure 7. Correlation plots of experimental and predicted CCR rates based
on different models for correlated bond motion. Rd(HN)/d(HRCR) + Rd(HRN)/

d(HCR) is abbreviated by R. Intraresidual and sequential CCR rates are shown
in (A) and (B), respectively. The theoretical CCR rates are calculated for
the rigid molecule (dark blue diamonds) and for models featuring correlated
(yellow triangles), uncorrelated (pink squares), and anticorrelated motion
(light blue crosses). Bond specific motional amplitudes obtained from HN-N
and HR-CR RDCs have been used in eqs 15.1-15.3 to model the extent of
motional correlation. Then, order parameters are obtained from integration
over the projection angles. The motional model that predicts the value closest
to the experimental rate is assigned to each connectivity.

3676 J. AM. CHEM. SOC. 9 VOL. 131, NO. 10, 2009

A R T I C L E S Vögeli and Yao



trends in specific structural elements can be observed. Figure 8
shows the HNN-HRCR network. The motional model that
predicts the value closest to the experimental rate is assigned
to each connectivity (For a similar map with model assignment
in letter code see Figure S1 in the Supporting Information). In
addition, model assignments based on a 13 ns trajectory of a
molecular dynamics (MD) simulation are shown. Here, expres-
sion 15.2 is subtracted from the rmsd of the dihedral angle. If
this value is smaller than -2° (larger than +2°), correlated
(anticorrelated) motion is assigned. Experimental evidence of
correlated motion in the loops comprising residues 10-14,
20-22, and 47-50 and of anticorrelated motion in the R helix
comprising 23-38 is supported by MD simulations. Somewhat
weaker correlation in the � strands 2-4 is not substantiated by
the MD simulations. Such motion may be present on a time
scale not sampled by the simulation but be picked up by RDCs
and CCR rates.

Indeed, correlated motion of the � sheet in GB3 in the nano-
to millisecond range has been proposed based on measurements
of scalar couplings across hydrogen bonds.16 In this study,
Gaussian motional amplitudes in three dimensions but not the
degree of correlation have been calculated with large sets of
RDCs (see Figure 8). Comparison of RDC order parameters to
Lipari-Szabo order parameters and accelerated molecular
dynamics (AMD)12 then indicates microsecond to millisecond
motion in the loops and the � sheet but not in the R helix. In
the strands �1, �3, and �4, an alternation of large and small
motional amplitudes is observed pointing to a mode coupled
across the sheet. Interestingly, the pattern matches the alternation
of strongly hydrophobic side chains buried in the protein core.
Such alternation is not present in the CCR pattern. However,
the CCR data does not probe exactly the same type of motion,
and a strict comparison has to be handled with care. In addition,
the authors proved the presence of correlated motion across the
� sheet. For this purpose, scalar couplings across hydrogen
bonds simulated for an ensemble exhibiting correlated motion
are shown to cross-validate best with the experimental data. Note
that such an approach cannot be applied to the R helix and the
loops. In the present study, correlated motion is detected within
the polypeptide chain. Apparently, the correlated motion of the
� sheet undergoes a collective rotational fluctuation along the
polypeptide chain in a manner synchronized with neighboring
� strands.

In this context, it is interesting to note that supra τc motion
has also been proposed along the entire sequence of ubiquitin,
which has a fold similar to GB3.63,64 Again, this has been
concluded from the observation that RDC orders parameters
covering a time window up to milliseconds are smaller than
Lipari-Szabo order parameters. A major part of this dynamics
is concentrated in a single concerted mode related to molecular
recognition.64 In particular, � strand residues with solvent-
exposed side chains exhibit reduced order parameters relative
to those with core side chains.63 This may be a hint to collective
motional � sheet behavior on slow time scale.

Conclusion

A new method is introduced to assess correlated dynamics
between bond vectors. Cross-correlated relaxation rates are
measured with high precision between vectors with accurately
known orientation. Experimental rates are compared to rates
predicted for a rigid structure. It is demonstrated that the
assumption of anisotropic molecular tumbling is necessary to
evaluate precisely cross-correlated relaxation rates. Deviations
are matched to models of different degrees of motional
correlation. These models are based on previously determined
orientations and motional amplitudes of isolated bond vectors
obtained from residual dipolar couplings. It is shown that for
GB3 predictions from a static structure using effective bond
lengths absorbing libration and vibration (1.041 and 1.117 Å
for HN-N and HR-CR) are within 3% of both experimental
intra- and interresidual rates. Analysis involving motional
models shows clear evidence of correlated motion in the loops
comprising residues 10-14, 20-22, and 47-50 and of anti-
correlated motion in the R helix comprising 23-38. Somewhat
weaker correlation is observed in the � strands 2-4, which have
previously been shown to exhibit slow correlated motional
modes. More experimental data and further refinement of
motional models are expected to lead toward individual
quantification of correlated dynamics between bond vectors.
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Figure 8. Dynamics correlation network of GB3. CR
(i - 1)-Ni and Ni-CR

i vectors are color coded according to the best matching model for motional
correlation between HR-CR and HN-N bonds: correlated motion, red; uncorrelated motion, blue; anticorrelated motion, yellow. The network labeled “exp”
(“sim”) is obtained from the experimental CCR rates (13 ns MD simulation). Bold lines are used if the model assignment is unambiguous within the
experimental error range in the experimental approach and if the difference between the dihedral fluctuation and expression 15.2 is larger than 3.5°. On top
of the networks, amplitudes of the γ motion presented in ref 16 are plotted.
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Supporting Information Available: Full description of the
correlation function of an anisotropically tumbling molecule;
details on calculation of simulated order parameters; figure
showing dynamics correlation network with letter code; table
presenting slopes, rmsd values, and Pearson’s correlation

coefficients between experimental CCR rates; table presenting
slopes, order parameters, rmsd values, and Pearson’s correlation
coefficients between experimental and predicted CCR rates; table
presenting experimental and predicted CCR rates. This material
is available free of charge via the Internet at http://pubs.acs.org.
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